\qquad
\qquad

1-1 Variables and Expressions (Pages 6-9)

Letters such as x and y in a mathematical expression are called variables. Variables are symbols that are used to represent unspecified numbers. Any letter may be used as a variable. An algebraic expression consists of one or more numbers and variables along with one or more arithmetic operations. In multiplication expressions, the quantities being multiplied are called factors, and the result is the product. An expression such as x^{y} is called a power. The variable x is the base and y is called the exponent. The exponent indicates the number of time the base is used as a factor.

Examples

Verbal Expression	Algebraic Expression
2 less than the product of 5 and a number y	$5 y-2$
the product of 4 and a divided by the product of 3 and b	$4 a \div 3 b$
nine feet shorter than the height of the tree ($T=$ tree height)	$T-9$
one-third as costly as a first-class ticket ($f=$ price of first class ticket)	$\frac{f}{3}$

Symbols	Words	Meaning
3^{1}	3 to the first power	3
3^{2}	3 to the second power or 3 squared	$3 \cdot 3$
3^{5}	3 to the fifth power	$3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$
$4 s^{3}$	4 times s to the third power or 4 times s cubed	$4 \cdot s \cdot s \cdot s$

Practice

Write an algebraic expression for each verbal expression.

1. the sum of g and 14
2. 10 less than the square of n
3. K to the fifth power
4. the product of 6 and r increased by one third of q
5. the product of 12 and y
6. 3 years younger than her sister ($s=$ sister's age)

Write a verbal expression for each algebraic expression.
7. $x^{3}-5$
8. 6^{4}
9. $\frac{n^{2}}{7}$
10. $2(p+4)$

Write each expression as an expression with exponents.
11. $5 \cdot 5$
12. $9 \cdot 9 \cdot 9 \cdot 9$
13. $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$
14. $n \cdot n \cdot n$
15. Standardized Test Practice Evaluate $2^{4}+5^{3}$.
A 14
B 23
C 141
D 7^{7}

