\qquad
\qquad

1-3 Open Sentences (Pages 16-20)

Mathematical statements with one or more variables are called open sentences. An open sentence is neither true nor false until the variable has been replaced by a value. Finding a replacement for the variable that results in a true sentence is called solving the open sentence. This replacement is called a solution of the open sentence. A sentence that contains an equals sign ($=$) is called an equation. A sentence that has the symbols $<,>, \leq$, or \geq is called an inequality. A set of numbers from which replacements for a variable may be chosen is called a replacement set. Each object or number in a set is called an element, or member. The solution set of an open sentence is the set of all replacements for the variable that make the sentence true.

Examples

a. Is the equation $3 a+12=25$ true if $a=4$?

$$
\begin{aligned}
3 a+12=25 & \\
3(4)+12=25 & \text { Replace a with } 4 . \\
12+12=25 & \text { Multiply 3 by } 4 . \\
24 \neq 25 & \text { Since } 24 \text { is not equal to } 25, \text { the } \\
& \text { equation is not true for the } \\
& \text { replacement value of } 4 .
\end{aligned}
$$

b. Find the solution set for the inequality $7 b+2 \geq 37$ if the replacement set is $\{3,4,5,6\}$.

Replace b with	$7 b+2 \geq 37$	True or False?
3	$7(3)+2 \geq 37 \rightarrow 23 \geq 37$	false
4	$7(4)+2 \geq 37 \rightarrow 30 \geq 37$	false
5	$7(5)+2 \geq 37 \rightarrow 37 \geq 37$	true
6	$7(6)+2 \geq 37 \rightarrow 44 \geq 37$	true

Therefore, the solution set is $\{5,6\}$.

Try These Together

1. Is the equation $x+\frac{1}{3}=\frac{1}{4}+\frac{3}{4}$ true if $x=\frac{1}{2}$?
2. Find the solution set for $3 g-2<16$ if the replacement set is $\{2,4,6,8\}$.

Practice

State whether each equation is true or false for the value of the variable given.
3. $a+\frac{1}{8}=\frac{6}{8}+\frac{1}{4}, a=\frac{7}{8}$
4. $4 x^{2}+2(5)=40, x=4$
5. $2 x^{2}+3(2)=56, x=5$
6. $\frac{1}{g^{2}+1} \leq \frac{1}{5}, g=2$

Find the solution set for each inequality. The replacement set is $y=\{5,10,15,20\}$.
7. $y-3 \leq 13$
8. $y+2>10$
9. $3 y-12 \geq 15$
10. Standardized Test Practice Which of the following is the solution set for the inequality $3 x^{2}+4(2) \leq 56$ if the replacement set is $\{2,3,4,5,6,7\}$?
A $\{5,6,7\}$
B $\{2,3,4\}$
C $\{4,5,6\}$
D $\{3,4,5\}$

