\qquad

10-4 Solving Quadratic Equations by Using the Quadratic Formula (Pages 546-552)

You can use the quadratic formula to solve any quadratic equation involving any variable.

The Quadratic Formula	The solutions of a quadratic equation in the form $a x^{2}+b x+c=0$, where $a \neq 0$, are given by the formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{}$.

Example

Use the Quadratic Formula to solve $x^{2}-2 x-5=0$.
In the equation $x^{2}-2 x-5=0, a=1, b=-2$, and $c=-5$.
Substitute these values into the Quadratic Formula.
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{2 \pm \sqrt{24}}{2}$
$x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-5)}}{2(1)}$
$x=\frac{2 \pm \sqrt{4+20}}{2}$

$$
x=\frac{2+\sqrt{24}}{2} \text { or } x=\frac{2-\sqrt{24}}{2}
$$

$x \approx 3.45 \quad x \approx-1.45 \quad$ Use a calculator.
The solutions are approximately 3.45 and -1.45 .

Practice

Solve each equation by using the Quadratic Formula. Approximate irrational roots to the nearest hundredth.

1. $x^{2}+6 x+8=0$
2. $n^{2}-12 n+32=0$
3. $c^{2}+4 c+8=0$
4. $p^{2}+4 p-1=0$
5. $d^{2}-2 d-15=0$
6. $5 h^{2}+4 h+4=0$
7. $3 e^{2}-6 e+3=0$
8. $2 m^{2}+8 m+2=0$
9. $g^{2}-3 g+2=0$
10. $4 k^{2}+2 k+3=0$
11. $3 f^{2}-11 f-4=0$
12. $4 v^{2}+12 v+9=0$
13. $x^{2}-12 x=-27$
14. $3 x^{2}+6 x=1$
15. $3 x-1=-x^{2}$
16. $2 x(x+1)=-5$
17. $x^{2}=2(4 x-1)$
18. $2\left(x^{2}+3\right)=3 x$
19. Automotive Sales Mark decided that the price of a car tire is a quadratic function of the radius of the tire. He modeled this using the equation $p=-r^{2}+36 r-255$, where p is the price of the tire in dollars and r is the radius of the tire in inches. Find the price that the model predicts for a tire of radius 14 inches. Then find the price the model predicts for a tire of radius 16 inches.
20. Standardized Test Practice For a certain quadratic equation, the value of $b^{2}-4 a c$ is -8 . How many real number roots does the equation have?
A 3 roots
B 2 roots
C 1 root
D 0 roots
