10-7

Geometric Sequences (Pages 567–572)

A sequence of numbers such as 2, 4, 8, 16, 32,... forms a **geometric sequence**. Each number in a geometric sequence increases or decreases by a common factor *r*, called the **common ratio**.

Geometric Sequence	A geometric sequence can be written in the form of <i>a</i> , <i>ar</i> , <i>ar</i> ² , <i>ar</i> ³ , <i>ar</i> ⁴ , where $r \neq 0$ or 1.
Calculating the <i>n</i> th term	The <i>n</i> th term of a geometric series with initial term a_1 and common ratio <i>r</i> is calculated by $a_n = a_1 \cdot r^{n-1}$.

Examples

a. Determine if the sequence is geometric.	b. Find the 12th to 4, 16, 64, 256,	b. Find the 12th term of the sequence 4, 16, 64, 256,	
-1, 3, -9, 27,	$a_n = a_1 \cdot r^{n-1}$	Formula for the nth term.	
$\frac{27}{-9} = -3$ Find the common ratio.	$\frac{16}{4} = 4$	Find the common ratio.	
(-1)(-3), $3(-3)$ Test for each element. Yes, the sequence is geometric.	$a_{12} = 4 \cdot 4^{12-1}$	Substitute.	
res, the sequence is geometric.	$a_{12} = 4 \cdot 4^{11}$	Simplify.	
	a ₁₂ = 4 · 4,194,304	Multiply.	
	a ₁₂ = 16,777,216	Multiply.	

Practice

Find the next three terms in each sequence.

$1. \ \frac{1}{2}, -1\frac{1}{2}, 4\frac{1}{2}, -13\frac{1}{2}, \dots$	2. -2, -15, -112.5, -843.75,	. 3. 1, 6, 36, 216,
4. 56, 28, 14, 7,	5. 64, -48, 36, -27,	6. 2, 22, 242, 2662,

- 7. Find the 10th term of the geometric sequence whose first term is 3 and common ratio is -2.
- 8. Find the 9th term of 25, 12.5, 6.25, 3.125,....
- 9. A geometric sequence begins with 5 and has a common ratio of $-\frac{1}{4}$. What is the sequence's 4th term?
- **10.** Standardized Test Practice The 15th term of a geometric sequence is 32,768. Which choice shows the possible first term and the possible common ratio? **A** 2, 2 **D** 8, -4 **B** 4, 3 **C** 15, 4

Answers: 1. 40, $\frac{1}{2}$, 463, $\frac{1}{2}$, 124, $\frac{1}{2}$, 124, $\frac{1}{2}$, 124, $\frac{1}{2}$, 126, $\frac{1}{2}$, $\frac{1}{2}$,