\qquad
\qquad

11-3 Radical Equations

Equations that contain radicals with variables in the radicand are called radical equations. To solve a radical equation, first isolate the radical on one side of the equation. Then square each side of the equation to eliminate the radical.

Examples

a. Solve $\sqrt{x}-4=-2$.
$\sqrt{x}-4=-2$
$\sqrt{x}=2 \quad$ Add 4 to each side.
$(\sqrt{x})^{2}=2^{2}$
$x=4$
Square each side.
Evaluate.
Check the solution.
$\sqrt{x}-4=-2$
$\sqrt{4}-4=-2$
$2-4=-2$
$-2=-2$
b. Solve $\sqrt{2 x-4}=x-2$.

$\sqrt{2 x-4}$	$=x-2$		
$(\sqrt{2 x-4})^{2}$	$=(x-2)^{2}$		Square each side.
$2 x-4$	$=x^{2}-4 x+4$		Simplify.
0	$=x^{2}-6 x+8$		Subtract.
0	$=(x-4)(x-2)$		Factor.
x	$=4$ or $x=2$		Use the Zero
		Product Property.	

Check your solutions.

$$
\begin{aligned}
\sqrt{2 x-4} & =x-2 \\
\sqrt{2(4)-4} & =4-2 \\
\sqrt{4} & =2 \\
2 & =2
\end{aligned}
$$

Try These Together

Solve each equation. Check your solution

1. $\sqrt{x}=\sqrt{3}$
2. $\sqrt{y}=\sqrt{6}$
3. $\sqrt{a}=3 \sqrt{5}$

HINT: Isolate the radical and then square both sides to eliminate the radical.

Practice

Solve each equation. Check your solution.
4. $\sqrt{y}-4=0$
5. $\sqrt{c}+4=0$
6. $\sqrt{s}+2=0$
7. $\sqrt{3 t+1}=6$
8. $\sqrt{2 x-2}=4$
9. $16-5 \sqrt{2 y}=1$
10. $3+2 \sqrt{m}=7$
11. $5+3 \sqrt{4 x}=8$
12. $\sqrt{a-3}=a-5$
13. $\sqrt{x+6}=x+4$
14. $3+\sqrt{a-3}=6$
15. $15+\sqrt{y-12}=33$
16. Physics The period T of a pendulum is the time it takes to make one complete swing. At the Earth's surface, $T=2 \pi \sqrt{\frac{L}{32}}$, where T is measured in seconds and L is the length of the pendulum in feet. To the nearest tenth, how long is a pendulum with a period of 2 seconds?
17. Standardized Test Practice Solve the equation $\sqrt{x+7}=2 \sqrt{2}$.
A 1
B 2
C 7
D 8

