__ DATE _____ PERIOD _

11-3 Radical Equations (Pages 598–603)

Equations that contain radicals with variables in the radicand are called radical equations. To solve a radical equation, first isolate the radical on one side of the equation. Then square each side of the equation to eliminate the radical.

Examples

a.	Solve $\sqrt{x} - 4 =$	-2.	b. Solve $\sqrt{2x-4} = x-2$	2.
	$\sqrt{x}-4=-2$		$\sqrt{2x-4}=x-2$	
	$\sqrt{x} = 2$	Add 4 to each side.	$(\sqrt{2x-4})^2 = (x-2)^2$	Square each side.
	$(\sqrt{x})^2 = 2^2$	Square each side.	$2x - 4 = x^2 - 4x + 4$	Simplify.
	x = 4	Evaluate.	$0 = x^2 - 6x + 8$	Subtract.
	Check the solution.		0 = (x - 4)(x - 2)	Factor.
	$\sqrt{x} - 42$		x = 4 or x = 2	Use the Zero
	$\sqrt{1}$ $\sqrt{4}$ $\sqrt{4}$			Product Property.
	$\sqrt{4} - 4 = -2$		Check your solutions.	
	2 - 4 = -2		$\sqrt{2x-4}=x-2$	$\sqrt{2x-4}=x-2$
	-2 = -2		$\sqrt{2(4)-4} = 4-2$	$\sqrt{2(2)-4} = 2-2$
			$\sqrt{4} = 2$	$\sqrt{0} = 0$
			2 = 2	0 = 0

Try These Together

Solve each equation. Check your solution

1. $\sqrt{x} = \sqrt{3}$ **3.** $\sqrt{a} = 3\sqrt{5}$ **2.** $\sqrt{y} = \sqrt{6}$

HINT: Isolate the radical and then square both sides to eliminate the radical.

Practice

Solve each equation. Check your solution.				
4. $\sqrt{y} - 4 = 0$	5. $\sqrt{c} + 4 = 0$	6. $\sqrt{s} + 2 = 0$		
7. $\sqrt{3t+1} = 6$	8. $\sqrt{2x-2} = 4$	9. $16 - 5\sqrt{2y} = 1$		
10. $3 + 2\sqrt{m} = 7$	11. $5 + 3\sqrt{4x} = 8$	12. $\sqrt{a-3} = a-5$		
13. $\sqrt{x+6} = x+4$	14. $3 + \sqrt{a - 3} = 6$	15. $15 + \sqrt{y - 12} = 33$		

16. Physics The period *T* of a pendulum is the time it takes to make one complete swing. At the Earth's surface, $T = 2\pi \sqrt{\frac{L}{32}}$, where T is measured in seconds and L is the length of the pendulum in feet. To the nearest tenth, how long is a pendulum with a period of 2 seconds?

 $-2.6 \quad 5.45 \quad 4.16 \quad 5.16 \quad 5.46 \quad 5.46 \quad 5.16 \quad$