\qquad
\qquad

12－1 Inverse Variation（Pages 642－647）

A situation in which y decreases as x increases is called an inverse variation．In this situation y varies inversely as x or y is inversely proportional to x ．Solutions to an inverse variation can be expressed as the product rule．The product rule states that for any two solutions（ x_{1}, y_{1} ） and $\left(x_{2}, y_{2}\right), x_{1}, y_{1}=x_{2} y_{2}$ and $\frac{x_{1}}{x_{2}}=\frac{y_{2}}{y_{1}}$ ．

Inverse Variation	If y varies inversely as x, then as x increases y decreases，or as x decreases y increases． An inverse variation can be described by the equation $x y=k$ ，where $k \neq 0$.
Product Rule	For solutions $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right), x_{1} y_{1}=x_{2} y_{2}$ and $\frac{x_{1}}{x_{2}}=\frac{y_{2}}{y_{1}}$.

Example

Solve for \boldsymbol{x} ．

If y varies inversely as x and $y_{1}=5$ when $x_{1}=9$ ，find x_{2} when $y_{2}=15$ ．

Method 1

Method 2

$x_{1} y_{1}=x_{2} y_{2}$	Use the product rule．	$\frac{x_{1}}{x_{2}}=\frac{y_{2}}{y_{1}}$	Use a proportion．
$9 \cdot 5=x_{2} \cdot 15$	Substitute．	$\frac{9}{x_{2}}=\frac{15}{5}$	Substitute．
$45=x_{2} \cdot 15$	Simplify．	$45=15 x_{2}$	Cross multiply．
$3=x_{2}$	Divide both sides by 15.	3 ＝x_{2}	Divide both sides by 15 ．

Practice

Write an inverse variation equation that relates x and y ．Assume that \boldsymbol{y} varies inversely as \boldsymbol{x} ．Then solve．
1．If $y=10$ when $x=7$ ，find y when $x=5$ ．
2．If $y=21$ when $x=10$ ，find y when $x=4$ ．
3．If $y=17.5$ when $x=12$ ，find y when $x=8$ ．
4．If $y=5$ when $x=5$ ，find x when $y=2$ ．
5．If $y=13$ when $x=-3$ ，find x when $y=-3.9$ ．
6．Find the value of y when $x=5$ if $y=8$ when $x=10$ ．
7．Find the value of y when $x=\frac{3}{4}$ if $y=27$ when $x=\frac{1}{4}$ ．
8．If $x=2.1$ when $y=7.2$ find x when $y=7.56$ ．
9．Standardized Test Practice Assuming that y varies inversely as x ，find the value of x when $y=-17$ if $y=-12$ when $x=-8 \frac{1}{2}$ ．
A $x=-12 \frac{1}{24}$
B $x=-24$
C $x=-6$
D $x=-\frac{1}{6}$

