NAME

PERIOD

12-1 Inverse Variation (Pages 642–647)

A situation in which *y* decreases as *x* increases is called an **inverse variation**. In this situation *y* varies inversely as *x* or *y* is inversely proportional to *x*. Solutions to an inverse variation can be expressed as the **product rule**. The product rule states that for any two solutions (x_1, y_1)

and
$$(x_2, y_2)$$
, $x_1, y_1 = x_2 y_2$ and $\frac{x_1}{x_2} = \frac{y_2}{y_1}$.

Inverse Variation	If y varies inversely as x, then as x increases y decreases, or as x decreases y increases.	
	An inverse variation can be described by the equation $xy = k$, where $k \neq 0$.	
Product Rule	solutions (x_1, y_1) and (x_2, y_2) , $x_1y_1 = x_2y_2$ and $\frac{x_1}{x_2} = \frac{y_2}{y_1}$.	

Example

Solve for *x*.

If y varies inversely as x and $y_1 = 5$ when $x_1 = 9$, find x_2 when $y_2 = 15$. *Method 1 Method 2*

$x_1 y_1 = x_2 y_2$	Use the product rule.	$\frac{x_1}{x_2} = \frac{y_2}{y_1}$	Use a proportion.
$9 \cdot 5 = x_2 \cdot 15$	Substitute.	$\frac{9}{x_2} = \frac{15}{5}$	Substitute.
$45 = x_2 \cdot 15$	Simplify.	$45 = 15x_2$	Cross multiply.
$3 = x_2$	Divide both sides by 15.	$3 = x_2$	Divide both sides by 15

Practice

Write an inverse variation equation that relates x and y. Assume that y varies inversely as x. Then solve.

1. If y = 10 when x = 7, find y when x = 5.

2. If y = 21 when x = 10, find y when x = 4.

- **3.** If y = 17.5 when x = 12, find y when x = 8.
- 4. If y = 5 when x = 5, find x when y = 2.
- **5.** If y = 13 when x = -3, find x when y = -3.9.
- **6.** Find the value of *y* when x = 5 if y = 8 when x = 10.
- **7.** Find the value of *y* when $x = \frac{3}{4}$ if y = 27 when $x = \frac{1}{4}$.
- 8. If x = 2.1 when y = 7.2 find x when y = 7.56.
- **9.** Standardized Test Practice Assuming that y varies inversely as x, find the value of x when y = -17 if y = -12 when $x = -8\frac{1}{2}$.

A $x = -12\frac{1}{24}$ **B** x = -24 **C** x = -6 **D** $x = -\frac{1}{6}$

Answers: 1.14 2.52.5 3.26.25 4.12.5 5.10 6.16 7.9 8.2 9.C