\qquad PERIOD \qquad

2-7 Square Roots and Real Numbers

(Pages 103-109)
If $x^{2}=y$, then x is a square root of y. A rational number, like 81 , whose square root, 9 , is a rational number, is called a perfect square. The number 81 has two square roots, 9 and -9 . The radical sign $\sqrt{ }$ is used to indicate a nonnegative or principal square root. For example, $\sqrt{81}=9$.

A square root of a positive rational number that is not a perfect square is an irrational number. An irrational number is a number that cannot be expressed in the form $\frac{a}{b}$, where a and b are integers and $b \neq 0$.

The set of rational numbers and the set of irrational numbers together form the set of real numbers. The graph of the set of all real numbers is the entire number line.

Examples

a. Find $\sqrt{0.09}$.
$\sqrt{0.09}=0.3$ since $(0.3) \cdot(0.3)=0.09$
b. Find $-\sqrt{0.4}$ to the nearest hundredth using a calculator.

Practice

$$
\sqrt{0.4} \approx 0.63, \text { so }-\sqrt{0.4} \approx-0.63
$$

Find each square root. Use a calculator if necessary. Round to the nearest hundredth if necessary.

1. $\sqrt{\frac{9}{16}}$
2. $\sqrt{441}$
3. $-\sqrt{\frac{121}{196}}$
4. $-\sqrt{961}$
5. $\sqrt{6.4}$

Evaluate each expression. Use a calculator if necessary. Round to the nearest hundredth if necessary.
6. \sqrt{a}, if $a=729$
7. $-\sqrt{c d}$, if $c=36$ and $d=81$
8. $\sqrt{q+r}$, if $q=42$ and $r=30$

Name the set or sets of numbers to which each real number belongs.
Use \mathbf{N} for natural numbers, W for whole numbers, Z for integers, Q for rational numbers, and I for irrational numbers.
9. $\sqrt{64}$
10. $\frac{-20}{2}$
11. $\sqrt{50}$
12. $-\sqrt{100}$
13. Standardized Test Practice A rectangular field has a length of ℓ feet and a width of w feet. The distance from any corner of the field to the diagonally-opposite corner is $\sqrt{\ell^{2}+w^{2}}$. What is the diagonal distance across a field that is 96 feet long and 28 feet wide?
A 144 ft
B 100 ft
C 124 ft
D 114 ft

