Solving Equations and Formulas

(Pages 166–170)

Some equations contain more than one variable. To solve an equation or formula for a specific variable, you need to get that variable by itself on one side of the equation. When you divide by a variable in an equation, remember that division by 0 is undefined.

When you use a formula, you may need to use dimensional analysis, which is the process of carrying units throughout a computation.

Examples

a. Solve the formula d = rt for t.

The variable t has been multiplied by r, so divide each side by r to isolate t.

$$\frac{d}{r} = \frac{rt}{t} \text{ or } \frac{d}{r} = t$$

Thus $t = \frac{d}{r}$, where $r \neq 0$.

b. Find the time it takes to drive 75 miles at an average rate of 35 miles per hour.

Use the formula you found for t in Example A.

$$t = \frac{d}{r}$$

$$t = \frac{75 \text{ mi}}{35 \frac{\text{mi}}{h}} \qquad \text{Use dimensional analysis.}$$

$$\frac{\text{mi}}{\frac{\text{mi}}{h}} = \frac{\text{mi}}{1} \cdot \frac{h}{\text{mi}} = h$$

$$t = 2\frac{1}{7} \text{ hours}$$

$$t = 2\frac{1}{7}$$
 hours

Try These Together

- **1.** Solve 4a + b = 3a for *a*. HINT: Begin by subtracting 3a from each side.
- **2.** Solve $\frac{c+d}{3} = 2c$ for *c*. HINT: Begin by multiplying each side by 3.

Practice

Solve each equation for the variable specified.

3.
$$f = epd$$
, for e

4.
$$12 g + 31h = -8g$$
, for h **5.** $y = mx + b$, for b

5.
$$y = mx + b$$
, for *b*

6.
$$v = r + at$$
, for r

7.
$$\frac{3x + y}{c} = 4$$
, for a

7.
$$\frac{3x+y}{c} = 4$$
, for c 8. $\frac{5xy+n}{2} = -6$, for y

9.
$$m + n + 2p = 3$$
, for m **10.** $6y + z = bc - 2y$, for y **11.** $3x - 4y = 7$, for y

10.
$$6v + z = bc - 2v$$
, for v

11.
$$3x - 4y = 7$$
, for y

12.
$$s = \frac{n}{2}(a + t)$$
, for n **13.** $v = \frac{4}{3}r$, for r

13.
$$v = \frac{4}{3}r$$
, for r

14.
$$W = mgh$$
, for g

15.
$$PV = nRT$$
, for V

16.
$$G = F - D$$
, for D

17.
$$6t + 62s = \frac{1}{2}(3t - 42s)$$
, for t

18.
$$3c + 5d = 7d - 6c$$
, for d

19. Standardized Test Practice Four ninths of a number c increased by 4 is 18 less than one eighth times another number d. Solve for c.

A
$$c = \frac{9}{32}d + 31\frac{1}{2}$$
 B $c = \frac{4}{72}d + \frac{4}{72}$ **C** $c = \frac{9}{32}d - 49\frac{1}{2}$ **D** $c = \frac{4}{72}d - 31\frac{1}{2}$

B
$$c = \frac{4}{72}d + \frac{4}{72}$$

C
$$c = \frac{9}{32}d - 49\frac{1}{2}$$

D
$$c = \frac{4}{72}d - 31\frac{1}{2}$$

Answers: 1.
$$a = -b$$
 2. $c = \frac{d}{5}$ 3. $\theta = \frac{1}{pd}$ 4. $h = \frac{-209}{34}$ 5. $b = y - mx$ 6. $t = v - 3t$ 7. $c = \frac{3x + y}{p}$ 8. $y = \frac{12}{pd}$ 9. $y = \frac{2}{pd}$ 9. $y = \frac{3x + y}{p}$ 16. $y = \frac{2}{p}$ 19. $y = \frac{2}{p}$ 1