\qquad PERIOD \qquad

4-3 Relations (Pages 205-211)

A relation is a set of ordered pairs. A relation can be represented by a mapping. A mapping shows a pairing of each x element in the domain with a y element in the range. Arrows go from the x element to the y element. You can find the inverse of a relation by switching the coordinates in each ordered pair.

Example

Express the relation shown in the mapping below as a set of ordered pairs. Then state the domain, range, and inverse of the relation.
set of ordered pairs: $\{(3,2),(4,3),(8,6)\}$
domain: $\{3,4,8\} \quad$ range: $\{2,3,6\}$.

To write the inverse, exchange the x - and y-coordinates.
inverse: $\{(2,3),(3,4),(6,8)\}$

Try These Together

1. State the domain, range, and inverse of $\{(3,7),(2,8),(1,9)\}$.
2. State the domain, range, and inverse of $\{(-1,4),(2,4),(3,5)\}$.

HINT: Recall that the domain contains the first, or x-coordinates.

Practice

State the domain and range of each relation.
3. $\{(6,3),(9,2),(6,4)\}$
4. $\{(10,-8),(9,-5)\}$

Express the relation shown in each table, mapping, or graph as a set of ordered pairs. Then state the domain, range, and inverse of the relation.
5.

x	y
20	15
22	18
25	19
31	20

6.

7.

8. School Emelina has noticed a ratio of 6 boys to 5 girls in her classes. She modeled this using the equation $b=1.2 g$, where b is the number of boys, g is the number of girls, and 1.2 is the ratio $\frac{6}{5}$. Explain why in this situation the solutions to this equation cannot be decimals. Use trial and error to make a table of three whole number values for g that have corresponding whole number values for b.
9. Standardized Test Practice What is the domain of the relation, $\{(2,7),(3,5),(2,8)\}$?
A $\{2,3,5,7,8\}$
B $\{5,7,8\}$
C $\{2,3,8\}$
D $\{2,3\}$

