Arithmetic Sequences (Pages 233–238)

An **arithmetic sequence** is a set of numbers in a specific order whose difference between successive terms is constant. Any number in the set is a **term**. To move from one term to the next term a constant number must be added to the previous term. For example, 3, 6, 9, 12,... is an arithmetic sequence because to progress from one term to the next, like 6 to 9, you must add a constant number, 3, to the previous term. In this example, 3 is called the **common difference**. Therefore, an arithmetic sequence can be found with $a_1, a_1 + d, a_2 + d, a_3 + d, \dots$ where a_1 is the first term of the sequence and d is the common difference. To calculate the *n*th term of an arithmetic sequence, you can use the formula $a_n = a_1 + (n - 1)d$.

Examples

NAME

4-7

a. Find the next three terms of the arithmetic sequence 0, 9, 18, 27,		b. Find the 7th term of the arithmetic sequence 10, 23, 36,	
9 - 0 = 9 18 - 9 = 9 27 - 18 = 9	Find the common difference by subtracting successive terms.	23 - 10 = 13 36 - 23 = 13	Find the common difference. $d = 13$
27 + 9 = 36 36 + 9 = 45 45 + 9 = 54 The next three	Add the common difference to the next three terms. terms are 36, 45, and 54.	$a_n = a_1 + (n - 1)d$ $a_7 = 10 + (7 - 1)13$ $a_7 = 10 + 6 \cdot 13$ $a_7 = 10 + 78$ $a_7 = 88$	Use the formula. Substitute. Evaluate by the order of operations.

Practice

Find the next three terms of each arithmetic sequence.

- **1.** $1, \frac{1}{2}, 0, \frac{-1}{2}, \dots$ **2.** 13, 30, 47, 64,...
- **3.** 102, 94, 86, 78,... 4. 4, 8, 12, 16,...
- **5.** $7, \frac{25}{4}, \frac{11}{2}, \frac{19}{4}, \dots$ **6.** 13, 11, 9, 7,...
- **7.** -1, -7, -13, -19,... **8.** -1, 2, 5, 8....

9.	Standardized Test Practice	Which of the following is the 24th term of the			
	arithmetic sequence 3, -	$2, -7, -12, \dots$?			
	A −62	B -92	C -112	D -162	

O'6 Answers: 1. -1, $\frac{-3}{2}$, -2 2. 81, 98, 115 3. 70, 62, 54 4. 20, 24, 28 5. 4, $\frac{4}{4}$, $\frac{5}{2}$ 6. 5, 3, 1 7. -25, -31, -37 8. 11, 14, 17