DATE PERIOD

5-6

Geometry: Parallel and Perpendicular

Lines (Pages 292–297)

Parallel Lines	Lines in the same plane that never intersect are called parallel lines . If two nonvertical lines have the same slope, then they are parallel. All vertical lines are parallel.
Perpendicular Lines	Lines that intersect at right angles are called perpendicular lines . If the product of the slopes of two lines is -1 , then the lines are perpendicular. The slopes of two perpendicular lines are negative reciprocals of each other. In a plane, vertical lines and horizontal lines are perpendicular.

Examples

a. Determine whether the graphs of 2y = -3x + 4 and 3y = 2x - 9 are parallel, perpendicular, or neither.

Rewrite each line in slope-intercept form to identify its slope.

$$2y = -3x + 4 \qquad 3y = 2x - 9$$

$$y = -\frac{3}{2}x + 2 \qquad y = \frac{2}{3}x - 3$$

$$m = -\frac{3}{2} \qquad m = \frac{2}{3}$$

Since $-\frac{3}{2} \cdot \frac{2}{3} = -1$, these lines are perpendicular.

b. Write an equation in slope-intercept
form of the line that is parallel to
the graph of
$$x + 6y = -12$$
 and has an
x-intercept of 9.

Find the slope of the line given.

$$6y = -x - 12 \quad \Rightarrow \quad y = -\frac{1}{6}x - 2$$

A line parallel to this line will have the same slope, or $-\frac{1}{6}$. An x-intercept of 9 means the new line passes through (9, 0).

 $y - y_1 = m(x - x_1)$ Point-slope form $y - 0 = -\frac{1}{6}(x - 9)$ $m = -\frac{1}{6}, (x_1, y_1) = (9, 0)$ $y = -\frac{1}{6}x + \frac{3}{2}$ Slope-intercept form

Practice

Determine whether the graphs of each pair of equations are *parallel*, perpendicular, or neither.

1. $x = 4y + 12$	2. $y = -x + 8$	3. $2y = 5x + 6$
4v = x + 8	x + 2y = 8	2x + 5y = 5

Write an equation in slope-intercept form of the line having the following properties.

- **4.** is perpendicular to the graph of $y = \frac{1}{2}x + 6$ and passes through (6, 8)
- **5.** is parallel to the graph of $y = \frac{1}{6}x 2$ and passes through the origin
- **6.** passes through (1, 0) and is parallel to the graph of 3x 3y = 5
- **7.** passes through (0, -7) and is perpendicular to the graph of x 2y = 7
- 8. is parallel to the x-axis and passes through (4, 5)

B $-\frac{1}{3}$

- **9.** is perpendicular to the graph of x 3y = 6 and passes through (7, -5)
- **10.** Standardized Test Practice What is the slope of a line perpendicular to y + 3x = 2?
 - A 3

D 3

9. y = -3x + 16 **10.** C $\delta = \gamma$. **8** $\lambda - x^2 - z^2$, $\gamma - x - y$. **6** $\lambda = \gamma$. **7** $\lambda = \gamma$. **8** $\lambda = \gamma$. **7** $\lambda = \gamma$. **8** $\lambda = \gamma$. **9** $\lambda = \gamma$.

 $C \frac{1}{3}$