DATE __

6-1

Solving Inequalities by Addition and Subtraction (Pages 318–323)

Addition and Subtraction	For all numbers <i>a</i> , <i>b</i> , and <i>c</i> , the following are true. 1. If $a > b$, then $a + c > b + c$ and $a - c > b - c$. (Also true for \ge) 2. If $a < b$, then $a + c < b + c$ and $a - c < b - c$. (Also true for \le)
Properties of mequalities	2. If $a < b$, then $a + c < b + c$ and $a - c < b - c$. (Also true for \leq)

The solutions of an inequality can be graphed on a number line or written using **set-builder notation**.

Example

Solve 3m - 7 > 4m + 1. Check your solution, and graph it on a number line.

3m - 7 > 4m + 1 3m - 7 - 3m > 4m + 1 - 3m -7 > m + 1 -7 - 1 > m + 1 - 1-8 > m or m < -8

In set builder notation, the solution set is $\{m|m < -8\}$, which is read "the set of all numbers m such that m is less than -8."

Only numbers less than -8 substituted into the original inequality should yield a true statement. $3(0) - 7 \stackrel{?}{>} 4(0) + 1$ Let m = 0. -7 > 1 False $3(-9) - 7 \stackrel{?}{>} 4(-9) + 1$ Let m = -9. -34 > -35 True Since only the number less than -8 yields a true statement, the solution checks.

Graph the point -8 using an open circle, since -8 is not part of the solution. Then draw a heavy arrow to the left to indicate numbers less than -8.

Try These Together

1. Solve and graph z - 16 < 5.

2. Solve and graph $j + \frac{1}{2} > 9$.

Practice

Solve each inequality. Then check your solution, and graph it on a number line.

3. -6 + m > 6 **4.** $3y \le 2y + 4$ **5.** x - 1 < -14 **6.** $-0.05 \le v - (-0.06)$

Solve each inequality. Then check your solution.

7. $x + \frac{1}{3} < \frac{1}{6}$	8. $-0.8x - 0.7 < 0.3 - 1.8x$	9. $5x + 7 \ge 4x + 8$
10. $2h - 5 \le h + 4$	11. $u - 45 \ge 38$	12. $2x + \frac{1}{3} \le 3x + \frac{2}{3}$

Define a variable, write an inequality, and solve each problem. Then check your solution.

13. A number decreased by -3 is at least 10.

14. Twice a number is more than the difference of that number and 4.

15. S	15. Standardized Test Practice Which number is a solution of $2x \le x + 8$?					
Α	12	В	11	C 9		D 6
	{	$ 12. = \frac{1}{3} \mathbf{x} = -\frac{1}{3} \mathbf{x} $	$n8 \le u u\}$.ff	9. $\{h \ge 1, x x x = 0$ 10. $\{h \ge 1, x x = 0\}$ 10. $\{h \ge 1, x x = 0\}$		$x x$ $\cdot \cdot \cdot$
	$\{\mathfrak{E} \upharpoonright - > x x\}$	4. $\{y \mid y \le 4\}$ 5.	3. {m m > 12}	$\{ i > 2, i > 3, i > 3, $	s, see Answer Key.	Answers: 1–6. For graphs