6-5

Solving Open Sentences Involving Absolute Value (Pages 345–351)

An open sentence involving absolute value can be solved by first rewriting it as a compound sentence.

Rewriting Absolute	• If $ x = n$, then $x = -n$ or $x = n$.	
Value Equations	• If $ x < n$, then $x > -n$ and $x < n$.	(Also true for $ x \le n$)
Inequalities	• If $ x > n$, then $x < -n$ or $x > n$.	(Also true for $ x \ge n$)

Examples Solve each open sentence. Then graph the solution set.

b. |p| > 3

p < -3 or p > 3

a. |2 + 4y| < 6

Rewrite as a compound inequality. Then solve. 2 + 4y > -6 and 2 + 4y < 64y > -84y < 4y > -2y < 1 The solution set is $\{y|-2 < y < 1\}$. -4-3-2-10123

Try These Together

1. Solve |a - 4| = 7 and graph the solution set. HINT: The solution will be two points.

2. Solve |6s - 4| < 8 and graph the solution set. HINT: The solution will be a line segment.

Rewrite as a compound inequality. Then solve.

The solution set is $\{p|p < -3 \text{ or } p > 3\}$.

3 units ¦ 3 units

-4 -3 -2 -1 0 1 2 3 4

Practice

Solve each open sentence. Then graph the solution set.

3. $ 5d + 1 = 9$	4. $ 2 - 2y > 8$	5. $ 3 - n \le 4$
6. $ -w + 8 \ge 11$	7. $ 2g - 6 < 1$	8. $ 1.1z - 3.3 = 7.7$

Express each statement in terms of an inequality involving absolute value.

- **9.** The weight *w* in a bicycle trailer is allowed to vary from 60 pounds by no more than 40 pounds.
- **10.** The height *h* of a person allowed on a roller coaster can vary from 65 inches by no more than 13 inches.

11. Standardized Test Practice Solve $|x - 5| \le 7$.

Α	$\{x x \le 12 \text{ or } x \ge -2\}$	В	$\{x \mid -2 \le x \le 12\}$
С	$\{x x \le 12\}$	D	$\{x x \ge -2\}$

B.11 $\mathbb{E}^{1} = |20 - n|$ **.01** $\mathbb{O}^{1} = |20 - w|$ **.01** $\mathbb{O}^{1} = |-10|$ **.02** $\mathbb{O}^{1} = |-10|$ **.03** $\mathbb{O}^{1} = |-10|$ **.04** $\mathbb{O}^{1} = |-10|$ **.05** $\mathbb{O}^{1} = |-10|$ **.05** $\mathbb{O}^{1} = |-10|$ **.05** $\mathbb{O}^{1} = |-10|$ **.05** $\mathbb{O}^{1} = |-10|$ **.06** $\mathbb{O}^{1} = |-10|$ **.07** $\mathbb{O}^{1} = |-10|$ **.01** $\mathbb{O}^{1} = |-10|$ $\mathbb{O}^{1} =$ As the set of the set