NAME

Graphing Systems of Inequalities

(Pages 394-398)

You can solve **systems of inequalities** by graphing. Recall that the graph of an inequality is a *half-plane*. The intersection of the two half-planes graphed in a system of inequalities represents the solution to the system.

Example

7-5

Graph the system of inequalities to find the solution. $x + y \leq 3$ and $y + 3 \geq x$

Begin by solving each inequality for y. Then, graph each inequality.

 $y + 3 \ge x$ $x + y \leq 3$ and $y \ge x - 3$ $y \leq -x + 3$

The solution to the system includes the ordered pairs in the intersection of the graphs of each inequality. This region is shaded dark gray.

Notice that the boundary lines y = -x + 3 and y = x - 3 are included in the solution, since the inequalities contained \leq and \geq symbols.

Try These Together

Solve each system of inequalities by graphing.

1. $x > 3$	2. $x \le 4$	3. $y - 3 > x$	4. $2y + x < 6$
$y \le 5$	y > -1	y + x < 3	3x - y > 4

HINT: Remember to graph inequalities with $\langle or \rangle$ with dashed lines because these lines are not included in the solution.

Practice

Solve each system of inequalities by graphing.

5.	<i>x</i> <	<	1
	<i>y</i> ?	>	-4

6. $2x + y \le 4$ $3x - y \ge 6$

 7. $y + 2 \le x$ 8. $x + 4 \le y$

 2y + 2 > 2x y > 2

9. Algebra Solve by graphing.

x - 4y > 11 $3x + y \leq 6$ $x \ge 0$

- **10.** Standardized Test Practice A dieter limits a snack to 90 Calories. Which is a possible snack combination of 20-Calorie apricots and 3-Calorie celery stalks?
 - **A** 4 apricots **B** 3 apricots **C** 2 apricots **D** all of these 3 celery stalks 10 celery stalks 8 celery stalks

© Glencoe/McGraw-Hill

Answers: 1-9. See Answer Key. 10. D

