\qquad PERIOD \qquad

7-5 Graphing Systems of Inequalities

(Pages 394-398)
You can solve systems of inequalities by graphing. Recall that the graph of an inequality is a half-plane. The intersection of the two half-planes graphed in a system of inequalities represents the solution to the system.

Example

Graph the system of inequalities to find the solution. $x+y \leq 3$ and $y+3 \geq x$
Begin by solving each inequality for y. Then, graph each inequality.

$$
\begin{aligned}
& x+y \leq 3 \quad \text { and } \quad y+3 \geq x \\
& y \leq-x+3 \quad \text { and } \quad y \geq x-3
\end{aligned}
$$

The solution to the system includes the ordered pairs in the intersection of the graphs of each inequality. This region is shaded dark gray.
Notice that the boundary lines $y=-x+3$ and $y=x-3$ are included
 in the solution, since the inequalities contained \leq and \geq symbols.

Try These Together

Solve each system of inequalities by graphing.

1. $x>3$
2. $x \leq 4$
$y>-1$
3. $y-3>x$
$y+x<3$
4. $2 y+x<6$
$3 x-y>4$

HINT: Remember to graph inequalities with < or $>$ with dashed lines because these lines are not included in the solution.

Practice

Solve each system of inequalities by graphing.
5. $\begin{aligned} x & <1 \\ y & >-4\end{aligned}$
6. $\begin{array}{r}2 x+y \leq 4 \\ 3 x-y \geq 6\end{array}$
7. $\begin{aligned} & y+2 \leq x \\ & 2 y+2>2 x\end{aligned}$
8. $\begin{aligned} & x+4 \leq y \\ & y>2\end{aligned}$
9. Algebra Solve by graphing.
$x-4 y>11$
$3 x+y \leq 6$
$x \geq 0$
10. Standardized Test Practice A dieter limits a snack to 90 Calories. Which is a possible snack combination of 20-Calorie apricots and 3-Calorie celery stalks?
A 4 apricots
3 celery stalks
B 3 apricots 10 celery stalks
C 2 apricots 8 celery stalks
D all of these

