Dividing Monomials (Pages 417–423)

Quotient of Powers	You can divide powers with the same base by subtracting exponents. For all integers m and n and any nonzero number a , $\frac{a^m}{a^n} = a^{m-n}$.
Zero Exponent	For any nonzero number a , $a^0 = 1$.
Negative Exponents	For any nonzero number a and any integer n , $a^{-n} = \frac{1}{a^n}$ and $\frac{1}{a^{-n}} = a^n$.

Examples

Simplify each expression.

a.
$$\frac{a^6b^9}{a^2b^5}$$

$$\frac{a^{6}b^{9}}{a^{2}b^{5}} = \left(\frac{a^{6}}{a^{2}}\right)\left(\frac{b^{9}}{b^{5}}\right) \\
= \left(a^{6-2}\right)\left(b^{9-5}\right) \\
= a^{4}b^{4}$$

b.
$$\frac{(2x^{-3})^{-3}}{(4x^2)^3}$$
$$\frac{(2x^{-3})^{-3}}{(4x^2)^3} = \frac{2^{-3}x^9}{4^3x^6}$$

$$= \left(\frac{1}{4^3}\right) \left(\frac{1}{2^3}\right) \left(\frac{x^9}{x^6}\right)$$

$$= \left(\frac{1}{64}\right) \left(\frac{1}{8}\right) x^9 - 6$$

$$= \left(\frac{1}{512}\right) x^3 \text{ or } \frac{x^3}{512}$$

Practice

Simplify. Assume that no denominator is equal to zero.

1.
$$x^{-3}y^0z^{-2}$$

2.
$$\frac{d^{-1}}{d^0}$$

3.
$$\frac{4a}{a^8}$$

4.
$$\frac{n^3}{n^{-1}}$$

5.
$$\frac{g^7h^2}{g^5h^0}$$

6.
$$\frac{5s^3}{40s^4}$$

7.
$$\frac{(-u)^2v^8}{u^6v^{-3}}$$

8.
$$\frac{a^2b^9}{a^2b^8}$$

$$9. \ \frac{16x^6y^7z^8}{-2x^4y^4z^0}$$

9.
$$\frac{16x^6y^7z^8}{-2x^4y^4z^0}$$
 10. $\frac{(f^{-5}g^7)^2}{(fg)^{-6}}$ **11.** $\frac{2rs^3}{3s^3}$

11.
$$\frac{2rs^3}{3s^3}$$

12.
$$\frac{(-m)^5n^7}{m^2n^7}$$

13.
$$\frac{(j^{-4}k^5)^2}{(7j^2)^2}$$

14.
$$\frac{26a^3}{-13a^6b^8}$$

15.
$$\frac{18rs^0t^9}{6r^8s^7t^4}$$

16.
$$\left(\frac{9ab^{-4}c}{6a^{-5}b^2}\right)^0$$

- **17. Money Matters** You can use the formula $P = A\left[\frac{i}{1-(1+i)^{-n}}\right]$ to find the monthly payment on a loan of A dollars that is paid back in equal monthly payments over n months. The variable i represents (annual interest rate ÷ 12). Seki has a \$4,000 student loan with an 8% annual interest rate which he is scheduled to pay off in 10 years. Use the formula and a calculator to find Seki's monthly payment.
- **18.** Standardized Test Practice Simplify $\frac{(x^2y)^2}{x^{-2}y^2}$.
 - $\mathbf{A} \frac{1}{v}$

 $\mathbf{B} x^2$

 $\mathbf{C} x^2 \mathbf{v}$

 $\mathbf{D} x^6$

Answers: 1.
$$\frac{1}{x^3 z^2}$$
 2. $\frac{1}{a}$ 3. $\frac{4}{5}$ 4. n^4 5. $9^2 h^2$ 6. $\frac{1}{8s}$ 7. $\frac{11}{u^4}$ 8. b 9. $-8x^2 y^3 z^8$ 10. $\frac{9^{20}}{4}$ 11. $\frac{21}{3}$ 12. $-m^3$ 13. $\frac{1}{49j^{12}}$ 14. $-\frac{2}{8}$ 15. $\frac{1}{49j^{12}}$ 16. $\frac{2}{49j^{12}}$