9-6

Perfect Squares and Factoring (Pages 508—514)

Products of the form $(a + b)^2$ and $(a - b)^2$ are called perfect squares, and their expressions are called **perfect square trinomials**.

Perfect Square	$(a + b)^2 = a^2 + 2ab + b^2$
Trinomials	$(a - b)^2 = a^2 - 2ab + b^2$
Factoring a Perfect Square Trinomial	 You can check whether a trinomial is a perfect square trinomial by checking that the following conditions are satisfied. The first term is a perfect square. The third term is a perfect square. The middle term is either 2 or -2 times the product of the square root of the first term and the square root of the third term.

Example

Determine whether $4x^2 + 4xy + y^2$ is a perfect square trinomial. If so, factor it.

Check each of the following.

- Is the first term a perfect square? $4x^2 \stackrel{?}{=} (2x)^2$ yes
- Is the last term a perfect square? $y^2 \stackrel{?}{=} (y)^2$ yes

• Is the middle term twice the product of 2x and y? 4xy = 2(2x)(y) yes

So, $4x^2 + 4xy + y^2$ is a perfect square trinomial.

 $4x^2 + 4xy + y^2 = (2x)^2 + 2(2x)(y) + (y)^2$ $= (2x + y)^2$

Practice

Determine whether each trinomial is a perfect square trinomial. If so, factor it. If the polynomial cannot be factored write prime.

1. $m^2 - 6m + 9$	2. $x^2 + 10x + 25$	3. $t^2 - 14t + 49$
4. $x^2 + 3x + 4$	5. $y^2 - 12y + 36$	6. $k^2 - 22k + 121$

Factor each polynomial. If the polynomial cannot be factored write prime.

7. $x^2 + 16x + 64$	8. $2q^2 + 30q - 8$	9. $x^2 + 3x + 9$
10. $4m^2 + 20m + 25$	11. $100h^2 - 9$	12. $4z^3 - 16z^2 + 16z$
13. $3x^2 + 24x + 48$	14. $n^2 + 1.8n + 0.81$	15. $7x^2 - 5.6x + 1.12$

16. Factor $\frac{1}{9}y^2 + 4y + 36$. (Hint: Check to see if the trinomial is a perfect square trinomial.)

17.	Standardized Test Practice	Factor the trinomia	$15a^2 + 30a + 45.$	
	A $(5a + 3)^2$ B	5(a+3)	C $(a + 3)^2$	D $5(a + 3)^2$

10. $(2m + 5)^2$ **11.** (10h - 3)(10h + 3) **12.** $4z(z - 2)^2$ **13.** $3(x + 4)^2$ **14.** $(n + 0.9)^2$ **15.** $7(x - 0.4)^2$ **16.** $(\frac{1}{3}y + 6)^2$ **17.** D American equation in the second straight for the seco