\qquad PERIOD \qquad

9-6 Perfect Squares and Factoring (Pages 508-514)

Products of the form $(a+b)^{2}$ and $(a-b)^{2}$ are called perfect squares, and their expressions are called perfect square trinomials.

| Perfect Square |
| :--- | :--- |
| Trinomials |\quad| $(a+b)^{2}=a^{2}+2 a b+b^{2}$ |
| :--- |
| $(a-b)^{2}=a^{2}-2 a b+b^{2}$ |\quad| You can check whether a trinomial is a perfect square trinomial by checking that the following |
| :--- |
| conditions are satisfied. |
| Factoring a |
| Perfect Square |
| Trinomial | | The first term is a perfect square. |
| :--- |
| - The third term is a perfect square. |
| the middle term is either 2 or -2 times the product of the square root of the first term and |
| the squat of the third term. |

Example

Determine whether $4 x^{2}+4 x y+y^{2}$ is a perfect square trinomial.
If so, factor it.
Check each of the following.

- Is the first term a perfect square? $4 x^{2} \stackrel{?}{=}(2 x)^{2}$ yes
- Is the last term a perfect square? $y^{2} \stackrel{?}{=}(y)^{2}$ yes
- Is the middle term twice the product of $2 x$ and y ? $4 x y=2(2 x)(y)$ yes

So, $4 x^{2}+4 x y+y^{2}$ is a perfect square trinomial.
$4 x^{2}+4 x y+y^{2}=(2 x)^{2}+2(2 x)(y)+(y)^{2}$

$$
=(2 x+y)^{2}
$$

Prabtice

Determine whether each trinomial is a perfect square trinomial. If so, factor it. If the polynomial cannot be factored write prime.

1. $m^{2}-6 m+9$
2. $x^{2}+10 x+25$
3. $t^{2}-14 t+49$
4. $x^{2}+3 x+4$
5. $y^{2}-12 y+36$
6. $k^{2}-22 k+121$

Factor each polynomial. If the polynomial cannot be factored write prime.
7. $x^{2}+16 x+64$
8. $2 q^{2}+30 q-8$
9. $x^{2}+3 x+9$
10. $4 m^{2}+20 m+25$
11. $100 h^{2}-9$
12. $4 z^{3}-16 z^{2}+16 z$
13. $3 x^{2}+24 x+48$
14. $n^{2}+1.8 n+0.81$
15. $7 x^{2}-5.6 x+1.12$
16. Factor $\frac{1}{9} y^{2}+4 y+36$. (Hint: Check to see if the trinomial is a perfect square trinomial.)
17. Standardized Test Practice Factor the trinomial $5 a^{2}+30 a+45$.
A $(5 a+3)^{2}$
B $5(a+3)$
C $(a+3)^{2}$
D $5(a+3)^{2}$

